隐式神经表示显示了3D场景重建的有希望的潜力。最近的工作将其应用于自主3D重建,通过学习信息获得图路径计划的信息增益。有效,信息增益的计算很昂贵,并且与使用体积表示相比,使用隐式表示为3D点进行碰撞检查要慢得多。在本文中,我们建议1)利用神经网络作为信息增益场的隐式函数近似器,以及2)将隐式细粒表示与粗量表示形式结合起来,以提高效率。随着效率的提高,我们提出了基于基于图的计划者的新型信息路径计划。我们的方法表明,与具有隐性和明确表示的自主重建相比,重建质量和计划效率的显着提高。我们将该方法部署在真正的无人机上,结果表明我们的方法可以计划信息意见并以高质量重建场景。
translated by 谷歌翻译
多源机电耦合使燃料电池电动汽车(FCEV)的能源管理相对非线性和复杂,尤其是在4轮驱动(4WD)FCEV的类型中。复杂的非线性系统的准确观察状态是FCEV中出色的能源管理的基础。为了释放FCEV的节能潜力,为4WD FCEV提出了一种基于学习的新型鲁棒模型预测控制(LRMPC)策略,从而有助于多个能源之间的合适功率分布。基于机器学习(ML)的精心设计的策略将非线性系统的知识转化为具有出色稳健性能的显式控制方案。首先,具有高回归准确性和出色概括能力的ML方法是离线训练的,以建立SOC的精确状态观察者。然后,使用国家观察者生成的SOC的显式数据表用于抓住准确的状态更改,其输入功能包括车辆状态和车辆组件状态。具体来说,提供未来速度参考的车辆速度估计是由深森林构建的。接下来,将包括显式数据表和车辆速度估计的组件与模型预测控制(MPC)结合使用,以释放FCEV中多释放系统的最新能源节能能力,其名称是LRMPC。最后,在模拟测试中进行详细评估以验证LRMPC的进步性能。相应的结果突出了LRMPC的最佳控制效应和强大的实时应用能力。
translated by 谷歌翻译
作为一种特殊的无限级矢量自回旋(VAR)模型,矢量自回归移动平均值(VARMA)模型比广泛使用的有限级var模型可以捕获更丰富的时间模式。然而,长期以来,其实用性一直受到其不可识别性,计算疾病性和解释相对难度的阻碍。本文介绍了一种新颖的无限级VAR模型,该模型不仅避免了VARMA模型的缺点,而且继承了其有利的时间模式。作为另一个有吸引力的特征,可以单独解释该模型的时间和横截面依赖性结构,因为它们的特征是不同的参数集。对于高维时间序列,这种分离激发了我们对确定横截面依赖性的参数施加稀疏性。结果,可以在不牺牲任何时间信息的情况下实现更高的统计效率和可解释性。我们为提出的模型引入了一个$ \ ell_1 $调查估计量,并得出相应的非反应误差边界。开发了有效的块坐标下降算法和一致的模型顺序选择方法。拟议方法的优点得到了模拟研究和现实世界的宏观经济数据分析的支持。
translated by 谷歌翻译
隐式神经表示表现出了令人信服的结果3D重建,并且最近也证明了在线大满贯系统的潜力。但是,将它们应用于自主3D重建,在此尚未研究机器人探索场景并计划重建的视图路径的情况下。在本文中,我们首次通过解决两个关键挑战来首次探索自动3D场景重建的可能性:1)寻求标准以根据新表示形式衡量候选人观点的质量,以及2)从可以推广到不同场景的数据而不是手工制作的数据中学习标准。对于第一个挑战,提出了峰值信噪比(PSNR)的代理来量化观点质量。代理是通过将场景中空间点的颜色视为在高斯分布下而不是确定性分布下的随机变量来获得的;分布的方差量化了重建的不确定性并组成代理。在第二个挑战中,代理与场景隐式神经网络的参数共同优化。通过提出的视图质量标准,我们可以将新表示形式应用于自动3D重建。我们的方法证明了与使用TSDF或重建的变体相比,在没有视图计划的情况下,与使用TSDF或重建的变体相比,对各种指标的各种指标进行了重大改进。
translated by 谷歌翻译
高阶交互事件在现实世界应用中很常见。从这些事件中编码参与者的复杂关系的学习嵌入在知识挖掘和预测任务中至关重要。尽管现有方法取得了成功,例如泊松张量分解,它们忽略了数据基础的稀疏结构,即发生的相互作用远小于所有参与者之间可能的相互作用。在本文中,我们提出了稀疏高阶交互事件(NESH)的非参数嵌入。我们杂交稀疏的超图(张量)过程和一个基质高斯过程,以捕获相互作用中的渐近结构稀疏性和参与者之间的非线性时间关系。我们证明了稀疏性比的强渐近边界(包括较低和上限),这揭示了采样结构的渐近特性。我们使用批界规范化,破坏性结构和稀疏的变分GP近似来开发有效的,可扩展的模型推理算法。我们在几个现实世界应用中证明了方法的优势。
translated by 谷歌翻译
多保真建模和学习在与物理模拟相关的应用中很重要。它可以利用低保真性和高保真示例进行培训,以降低数据生成成本,同时仍然达到良好的性能。尽管现有方法仅模型有限,离散的保真度,但实际上,忠诚度的选择通常是连续且无限的,这可以对应于连续的网格间距或有限元元素长度。在本文中,我们提出了无限的保真度核心化(IFC)。鉴于数据,我们的方法可以在连续无限的保真度中提取和利用丰富的信息来增强预测准确性。我们的模型可以插值和/或推断出对新型保真度的预测,甚至可以高于训练数据的保​​真度。具体而言,我们引入了一个低维的潜在输出作为保真度和输入的连续函数,并具有带有基矩阵的多个IT以预测高维解决方案输出。我们将潜在输出建模为神经普通微分方程(ODE),以捕获内部的复杂关系并在整个连续保真度中整合信息。然后,我们使用高斯工艺或其他颂歌来估计忠诚度变化的碱基。为了有效的推断,我们将碱基重组为张量,并使用张量 - 高斯变异后部为大规模输出开发可扩展的推理算法。我们在计算物理学的几个基准任务中展示了我们的方法的优势。
translated by 谷歌翻译
自动放射学报告生成对于计算机辅助诊断至关重要。通过图像字幕的成功,可以实现医疗报告的生成。但是,缺乏注释的疾病标签仍然是该地区的瓶颈。此外,图像文本数据偏差问题和复杂的句子使生成准确的报告变得更加困难。为了解决这些差距,我们预定了一个自我引导的框架(SGF),这是一套无监督和监督的深度学习方法,以模仿人类的学习和写作过程。详细说明,我们的框架从具有额外的疾病标签的医学报告中获得了域知识,并指导自己提取与文本相关的罚款谷物视觉特征。此外,SGF通过纳入相似性比较机制,成功地提高了医疗报告生成的准确性和长度,该机制通过比较实践模仿了人类自我完善的过程。广泛的实验证明了我们在大多数情况下我们的SGF的实用性,表明其优于最先进的甲基动物。我们的结果突出了提议的框架的能力,以区分单词之间有罚的粒度视觉细节并验证其在生成医疗报告中的优势。
translated by 谷歌翻译
移动和可穿戴设备已启用许多应用,包括活动跟踪,健康监测和人机互动,可衡量和改善我们的日常生活。通过利用许多移动设备和可穿戴设备中的低功耗传感器的丰富集合来执行人类活动识别(HAR),可以实现许多这些应用。最近,深入学习大大推动了哈尔的界限,在移动和可穿戴设备上。本文系统地对现有的工作进行了分类,并总结了为可穿戴性的哈尔引入深度学习方法的现有工作,并为目前的进步,发展趋势和主要挑战提供了全面的分析。我们还展示了深度学习的哈尔的前沿前沿和未来方向。
translated by 谷歌翻译
我们总结了使用巨大的自动语音识别(ASR)模型的大量努力的结果,该模型使用包含大约一百万小时音频的大型,多样的未标记数据集进行了预训练。我们发现,即使对于拥有数万个小时的标记数据的非常大的任务,预训练,自我培训和扩大模型大小的组合也大大提高了数据效率。特别是,在具有34K小时标记数据的ASR任务上,通过微调80亿个参数预先训练的构象异构体模型,我们可以匹配最先进的(SOTA)性能(SOTA)的性能,只有3%的培训数据和通过完整的训练集可以显着改善SOTA。我们还报告了从使用大型预训练和自我训练的模型来完成一系列下游任务所获得的普遍利益,这些任务涵盖了广泛的语音域,并涵盖了多个数据集大小的大小,包括在许多人中获得SOTA性能公共基准。此外,我们利用预先训练的网络的学会表示,在非ASR任务上实现SOTA结果。
translated by 谷歌翻译
Recent work has explored the potential to adapt a pre-trained vision transformer (ViT) by updating only a few parameters so as to improve storage efficiency, called parameter-efficient transfer learning (PETL). Current PETL methods have shown that by tuning only 0.5% of the parameters, ViT can be adapted to downstream tasks with even better performance than full fine-tuning. In this paper, we aim to further promote the efficiency of PETL to meet the extreme storage constraint in real-world applications. To this end, we propose a tensorization-decomposition framework to store the weight increments, in which the weights of each ViT are tensorized into a single 3D tensor, and their increments are then decomposed into lightweight factors. In the fine-tuning process, only the factors need to be updated and stored, termed Factor-Tuning (FacT). On VTAB-1K benchmark, our method performs on par with NOAH, the state-of-the-art PETL method, while being 5x more parameter-efficient. We also present a tiny version that only uses 8K (0.01% of ViT's parameters) trainable parameters but outperforms full fine-tuning and many other PETL methods such as VPT and BitFit. In few-shot settings, FacT also beats all PETL baselines using the fewest parameters, demonstrating its strong capability in the low-data regime.
translated by 谷歌翻译